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 Executive Summary 

One of the greatest pollution problems in the world today is the threat to safe drinking 

water.  Less than 1% of the water on earth is clean and available for potable drinking water.  The 

sources of human drinking water are a mixture of groundwater aquifers and surface water 

reservoirs.  It is vitally important to the sustainability and safety of society that these water 

sources be protected from pollutants.  A significant source of pollution to drinking water supplies 

comes from the discharge of untreated or under treated stormwater runoff. 

Stormwater runoff occurs naturally during precipitation when the ground cannot absorb 

all of the rainfall.  However, with the increase in man-made impervious surfaces, such as roads, 

rooftops, and parking lots, the volume of stormwater runoff has drastically increased.   As the 

runoff flows over the land or impervious surfaces, it accumulates debris, chemicals, sediment or 

other pollutants that can drastically impact water quality.  One of the largest contributions of 

pollution to stormwater runoff is from roadways. 

The rise of the automobile in the early 20th century created an unprecedented demand for 

an affordable, tough, and impervious pavement with which to construct better roads.  This need 

was met with the creation of asphaltic concrete, or more commonly known as hot mix asphalt 

pavement.  The advent of asphalt pavement allowed for the rapid expansion of human society, 

allowing the population to sprawl outwards from cities.  As automobiles became more prevalent 

in society, the amount of asphalt pavement increased exponentially.  Today 95% of the paved 

roads in America are paved with hot mix asphalt, covering more than 4 million kilometers of 

roadway. 

There has been a great deal of scientific attention given to pollutant deposition on 

roadways from automobiles.  Sources include vehicle exhaust, tire wear, accidents, lubricating 
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oils, and deicing operations.  These contributing factors result in oils, heavy metals, salts, and 

other chemicals being put down on the road surface, which can then wash off during the first-

flush period of a storm.  While there is an abundance of research into this phenomenon, there is 

relatively little concern given to pollution coming from the roadway material itself. 

Furthermore, due to the nature of the bituminous binder used in hot mix asphalt, it is 

known that there are harmful chemicals present in the pavement.  Very little is known however, 

about the specific concentrations of such constituents, or the extent to which they leach out of the 

pavement and into stormwater runoff.  This project investigates the presence and concentration 

of several selected petroleum hydrocarbons in runoff from asphalt pavement.  Field samples 

taken from various local sites were collected during the first-flush period of a rainstorm, in 

addition to laboratory-generated runoff samples from both virgin hot mix asphalt and reclaimed 

asphalt pavement. 

The samples generated during this project were analyzed using several methods of 

detection.  These include fluorometry, high performance liquid chromatography (HPLC), and 

total petroleum hydrocarbon (TPH) analysis.  In particular the high performance liquid 

chromatography has not commonly been used to detect petroleum hydrocarbons, but offers a 

fresh perspective as to the chemical makeup of samples as it offers exceptionally low detection 

limits. 

Overall, reclaimed asphalt pavement (RAP) runoff was shown to have higher 

concentrations of petroleum hydrocarbons and greater complexity than virgin asphalt. 

Fluorescence values from the field fluorometer as well as absorbance value integrands from the 

HPLC and TPH concentrations done by a third party were universally higher in the RAP samples 

compared to the virgin asphalt samples.  This shows that RAP has higher petroleum hydrocarbon 



 
 

4 
 

concentrations. The HPLC results show greater numbers of peaks in the RAP samples as 

compared to the Virgin samples showing that RAP contains a larger number of unique petroleum 

hydrocarbons and are therefore is more complex. From the HPLC results the most complex 

sample was a field sample from a high traffic road.  

The most polluted laboratory sample, a shake table sample, had concentrations of 

petroleum hydrocarbons far beyond federal regulations. In comparison, all of the field samples 

and laboratory samples modeling realistic conditions were either below detection or had very 

low petroleum hydrocarbon concentrations. It was found that asphalt does contain carcinogenic 

petroleum hydrocarbons but these molecules seem to be leaching into runoff at very low 

concentrations. However, as usage and wear is increased, this concentration in runoff can 

increase as shown by the shake table samples. These carcinogenic petroleum hydrocarbons, most 

notably Benzo[a]pyrene, are harmful and should be investigated further. 

The project also investigated the current regulations and policies in place regarding 

stormwater treatment and management practices.  Additionally, recommendations for changing 

or creating policies regarding the chosen constituents and their allowable limits in the 

environment based on their toxicity are also presented.  

Given the wide scope of the problems involving hydrocarbons and pavement, there is still 

much more investigation that can be done into the emerging problem of petroleum hydrocarbons 

leaching from asphalt pavement.  One goal for this project is to raise attention to a matter that 

has widely been overlooked, and one that may be far greater in magnitude than has been yet 

realized.  While the concentrations of toxic hydrocarbons entering our environment through 

stormwater runoff from asphalt surfaces may be relatively low, when the extent of roadways and 
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parking lots in the United States alone is considered, the total volume of deposited toxins may be 

significant. 

 

  



 
 

6 
 

Table of Contents 
 
Executive Summary ...................................................................................................................................... 2 

Table of Contents .......................................................................................................................................... 6 

List of Figures ............................................................................................................................................... 8 

List of Tables ................................................................................................................................................ 9 

Abstract ....................................................................................................................................................... 10 

1. Introduction ............................................................................................................................................. 11 

1.1 Background ....................................................................................................................................... 11 

1.2 Problem Statement ............................................................................................................................ 11 

1.3 Objectives & Scope ........................................................................................................................... 13 

1.4 Approach & Methodology ................................................................................................................ 13 

1.5 Outline............................................................................................................................................... 15 

2. Literature Review .................................................................................................................................... 16 

2.1 Stormwater Runoff ............................................................................................................................ 16 

2.2 Asphalt Pavement ............................................................................................................................. 17 

2.2.1 Production process ..................................................................................................................... 17 

2.2.2 Chemical composition ............................................................................................................... 19 

2.2.3 Extent of Use .............................................................................................................................. 20 

2.3 Ecological and Health Concern of Constituents ............................................................................... 21 

2.4 Stormwater Policy ............................................................................................................................. 26 

2.5 Literature Review Conclusion .......................................................................................................... 29 

3. Methodology ........................................................................................................................................... 30 

3.1 Overall Methodology ........................................................................................................................ 30 

3.2 Stormwater Runoff Sample Collection ............................................................................................. 31 

3.2.1 Collection Preparation ............................................................................................................... 31 

3.2.2 Sample Collecting Procedure ..................................................................................................... 33 

3.3 Production of asphalt samples ........................................................................................................... 33 

3.3.1 Pre-mix preparations .................................................................................................................. 34 

3.3.2 Batching & Mixing .................................................................................................................... 36 

    3.3.2.1 Virgin Samples .................................................................................................................... 36 

    3.3.2.2 AI RAP Samples ................................................................................................................. 37 



 
 

7 
 

3.3.3 Gyratory Compaction ................................................................................................................. 37 

3.3.4 Sample Cooling & Storage ........................................................................................................ 39 

3.4 Laboratory Experiments on Prepared Asphalt Samples .................................................................... 39 

3.4.1 Shake Table Procedure ............................................................................................................... 39 

3.4.2 Circulating Water Procedure ...................................................................................................... 41 

3.5 Sample Storage & Preparation for Analysis ..................................................................................... 44 

3.6 Sample Analysis Procedures ............................................................................................................. 44 

3.6.1 Constituent Selection ................................................................................................................. 44 

3.6.2 Fluorometer Testing Procedure .................................................................................................. 45 

3.6.3 HPLC Testing Procedure ........................................................................................................... 47 

3.6.4 Laboratory Analysis ................................................................................................................... 51 

4. Results ..................................................................................................................................................... 52 

4.1 Fluorometry Results .......................................................................................................................... 52 

4.2 HPLC Results .................................................................................................................................... 54 

4.3 Total Petroleum Hydrocarbons Results ............................................................................................ 61 

4.4 HPLC Based Concentration .............................................................................................................. 63 

4.5 PAHs from Pyrolysis ........................................................................................................................ 64 

4.6 Policy Recommendations .................................................................................................................. 65 

4.6.1 Roadway Paving Pollution Control ............................................................................................ 65 

4.6.2 Integrated Risk Information System .......................................................................................... 67 

4.6.3 Maximum Contaminant Levels .................................................................................................. 69 

4.6.4 Chemical Remediation Techniques ........................................................................................... 70 

4.7 Summary of Results .......................................................................................................................... 70 

5. Conclusions ............................................................................................................................................. 71 

5.1 Summary of Work ............................................................................................................................. 71 

5.2 Recommendations for Future Work ................................................................................................. 72 

5.2.1 Expanding on Current Work ....................................................................................................... 72 

5.2.2 Related Future Work .................................................................................................................. 74 

5.3 Conclusion ........................................................................................................................................ 75 

References ................................................................................................................................................... 77 

  



 
 

8 
 

List of Figures 
 

Figure 2.1 – An Epoxide ............................................................................................................................. 23 

Figure 2.2 - A Benzo[a]Pyrene-diol-epoxide interacting with a guanine nucleotide .................................. 24 

Figure 3.1 - RAP & Aggregate Samples ..................................................................................................... 35 

Figure 3.2 - PG64-28 Asphalt Binder ......................................................................................................... 37 

Figure 3.3 - Pine Instrument Gyratory Compactor & Extruded Sample ..................................................... 38 

Figure 3.5 - Instrument Panel ...................................................................................................................... 40 

Figure 3.4 - Shake Table Setup ................................................................................................................... 40 

Figure 3.6 - Cole Parmer Masterflex pump ................................................................................................ 42 

Figures 3.8 - Outflow Tubing ..................................................................................................................... 42 

Figure 3.7 - Pump Intake ............................................................................................................................ 42 

Figure 3.9 - Circulating Water Experiment Setup ...................................................................................... 43 

Figure 3.10 - 10-AU Fluorometer ............................................................................................................... 46 

Figure 3.11 - A PerkinElmer HPLC ............................................................................................................ 47 

Figure 3.12 - Drip Feed Tubes & Receiving Jar ......................................................................................... 48 

Figure 3.13 - HPLC Column ....................................................................................................................... 49 

Figure 3.14 - Sample Array with Robotic Arm (visible on left) ................................................................. 50 

Figure 4.1 - AI RAP 2 Shake-table Sample HPLC ..................................................................................... 56 

Figure 4.2 - Virgin 1 Shake-table Sample HPLC ....................................................................................... 57 

Figure 4.3 - Drury Lane and Park Avenue Sample HPLC .......................................................................... 59 

Figure 5.4 - Benzo[a]Pyrene formation. Perera, 1981. ............................................................................... 64 

  



 
 

9 
 

List of Tables 
 

Table 2.1 - Cancer in Asphalt Paving Industry ........................................................................................... 25 

Table 3.1 - Sample Collection Sites & Criteria .......................................................................................... 32 

Table 3.2 - Virgin Asphalt Mix Design ...................................................................................................... 36 

Table 3.3 - AI RAP Mix Design ................................................................................................................. 36 

Table 3.4 - Sample Cylinder Temperatures & Final Masses ...................................................................... 39 

Table 3.5 - Alpha Analytical Samples ........................................................................................................ 51 

Table 4.1 - Fluorometer Results .................................................................................................................. 53 

Table 4.2 - HPLC Results ........................................................................................................................... 60 

Table 4.3 - Combined Test Results ............................................................................................................. 62 

 

  



 
 

10 
 

Abstract 

Polycyclic aromatic hydrocarbons (PAHs) leaching from asphalt pavement is both an 

ecological and human health concern.  Three constituents of greatest concern were selected from 

scientific research for investigation.  Stormwater runoff samples from field sites were collected, 

and laboratory samples were created from virgin and reclaimed asphalt for chemical analysis. 

Methods of analysis included high-performance liquid chromatography, fluorometry, and gas 

chromatography.  These were used to determine the extent to which PAHs leach into stormwater 

runoff.  Existing environmental policy was reviewed and new policy was proposed in light of 

findings. 
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1. Introduction 

1.1 Background 

 Water is essential to the survival of every living species on earth.  While water is the 

single most abundant resource on our planet, only about 1% of the water on earth is available for 

human use.  Society is dependent on clean drinking water supplies.  In the United States, 

residents and businesses obtain their drinking water by drilling wells into ground water or by 

pumping water from reservoirs and rivers.  It is imperative that these drinking water supplies are 

free of contaminants and toxic pollutants that can harm human health.  Unfortunately in today’s 

rapidly developing society, potable drinking water is at constant risk of contamination from man-

made constituents. 

Extensive research has been devoted to finding the sources of many man-made 

constituents entering water supplies, and how to prevent or treat them.  There are laws and 

policies in place that regulate and govern the usage and disposal of a large number of known 

harmful chemicals, however, there are newly-emerging contaminants being discovered every day 

in the environment and in water supplies.  As these new constituents gain attention, it has 

become clear that there is a lack of understanding in the source of these chemicals, as well as a 

lack of governmental policy in place to protect water supplies and human health. 

 

1.2 Problem Statement 

It is vitally important that public drinking water supplies are safe for human consumption 

and free of contaminants.  Ground and surface water supplies are maintained by natural 

precipitation.  When water falls to the earth in the form of rain or snow, known as stormwater, 

some of it runs off of the surface of the ground into stormdrains or streams, some falls into water 
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bodies, and some soaks directly into the ground.  One of the leading causes of water supply 

pollution is the discharge of untreated stormwater runoff into surface waters. 

Human development has caused a drastic increase in the amount of impervious surfaces 

in the environment.  This increase in impervious surfaces, largely caused by pavement and roofs, 

has resulted in much higher levels of stormwater runoff entering water supplies.  When 

stormwater flows over man-made impervious surfaces it collects pollution put down on that 

surface, primarily caused by other human activity.  This includes automotive pollution put down 

on roads and parking lots such as gasoline, motor oil, and heavy metals from vehicles.  While 

much is known about the man-made pollution put down on roads by foreign sources, the 

impervious surface itself has largely been overlooked as a potential source of pollutants.   

Asphalt pavement covers 95% of the total paved roads in the United States (Federal 

Highway Administration (FHwA), 1997). With the amount of surface area of asphalt pavement 

in the United States alone, and the associated stormwater runoff it causes, there is an enormous 

potential for harmful chemicals in this runoff to become deposited in human water supplies.  It is 

known that many of these chemicals may be attributed to distributed sources (or non-point 

sources) of contaminants that are deposited on the land surface, and end up being washed off by 

the runoff.  There is also a possibility that the asphalt itself may contribute to some of these 

contaminant loadings.  This project investigates the presence of petroleum hydrocarbons in 

asphalt pavement and their harmful effects on human health.  The concern is that these 

constituents are present in asphalt pavement and are potentially leaching out of pavement 

materials into stormwater runoff and into local ecology and drinking water supplies. 

 



 
 

13 
 

1.3 Objectives & Scope 

The focus of this Interactive Qualifying Project (IQP) is on asphalt pavement and its 

effects on stormwater runoff quality. The goal is to determine the extent to which asphalt leaches 

contaminants into stormwater. The areas of research consisted of which constituents are present 

in asphalt runoff, which are of primary concern, and their harmful effects on ecology and human 

health.  Additional research into current stormwater runoff management practices and their 

effectiveness at removing these constituents was also completed, as well as a study into the 

regulation and policies in place addressing these concerns.  

 The results of this project consist of policy update recommendations on emerging 

constituents with harmful effects on human life that have not yet been fully investigated or 

regulated.  The results will reexamine current stormwater collection and treatment practices and 

their effectiveness at controlling and removing the constituents of potential concern. 

These results are of concern to public health agencies, as well as environmental 

protection agencies, and organizations concerned with drinking water quality.  These agencies 

may consist of the United States Environmental Protection Agency, The Agency for Toxic 

Substances and Disease Registry, and more local organizations such as the Massachusetts Water 

Resource Authority.  Toxicologists may be particularly interested in the results of this project as 

it addresses the presence of a highly complex mixture of harmful petroleum hydrocarbons in 

asphalt pavement, an extremely large point source that has been mostly overlooked previously. 

 

1.4 Approach & Methodology 

The goal of this project was met through a combination of literature research, field 

sample collection, laboratory asphalt production, and chemical analysis. The project began with 
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an investigation into the potential petroleum hydrocarbons present in asphalt pavement materials.  

In depth research into the harmful effects of these constituents led to a selection of three 

chemicals for further analysis.  The current policy and regulation of the selected constituents was 

investigated, and used later as a framework for additional policy proposal in conjunction with the 

laboratory findings.   

In order to explore the presence and extent of the selected constituents in asphalt 

pavement, field samples of roadway stormwater runoff were collected from local areas of 

concern.  As a basis for comparison, laboratory samples of asphalt were made using fresh asphalt 

as well as reclaimed asphalt pavement.  Experiments were then conducted on the produced 

asphalt samples in order to generate water samples for analysis.  The experiments were designed 

for the comparison of concentration levels of constituents between cases designed for producing 

the maximum potential concentration levels, and a laboratory controlled procedure designed to 

simulate a realistic roadway runoff situation.   

The water samples collected from the field and laboratory procedures were tested using 

three different methods of analysis.  On campus, fluorometry analysis was performed in order to 

gain a baseline comparison of the level of contamination of polycyclic hydrocarbons between the 

samples. Further analysis was conducted using high performance liquid chromatography (HPLC) 

for the three constituents of main concern.  HPLC was selected because it shows overall 

chemical complexity and allows for exceedingly low detection limits.  Finally, a representative 

selection of the samples were sent to a third-party laboratory for analysis of total petroleum 

hydrocarbon (TPH) content to provide an additional layer of information regarding sample 

contamination.   
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1.5 Outline 

Chapter 2 of this report is the literature review, which contains background information 

necessary for a good understanding of stormwater, the asphalt industry, the harmful chemicals 

being investigated, and current policy surrounding these topics.  Chapter 3 describes in detail the 

procedures and methodology used in the creation of this report.  Chapter 4 is the results section 

of this report, and contains analysis of the data produced from the laboratory procedures.  

Finally, chapter 5 presents final conclusions and recommendations for future work on the subject 

matter. 
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2. Literature Review 

 The following is a comprehensive review of the many facets comprising this Interactive 

Qualifying Project.  This project focuses on the presence of petroleum hydrocarbons in asphalt 

pavement, and the extent to which they leach into stormwater runoff and subsequently the 

surrounding environment.  It is important, therefore to understand the composition of hot mix 

asphalt, its production process, and the harmfulness of the constituents found in it.  Attention 

must also be given to the nature of stormwater runoff, and how it is treated prior to reentering the 

drinking water supply. 

 

2.1 Stormwater Runoff 

Ground and surface water supplies are maintained by natural precipitation.  When water 

falls to the earth in the form of rain or snow, known as stormwater, some of it runs off of the 

surface of the ground into stormdrains or streams, some falls into water bodies, and some soaks 

directly into the ground.  Water that seeps into the ground travels downward due to gravity until 

it reaches a depth where the soil and rock are saturated with water.  Water at this level below 

ground is known as ground water.  The New England area naturally features subsurface rock and 

soil that contains large quantities of ground water which can be used for drinking water.   

Stormwater runoff is generated when precipitation from rain and snowmelt events flows 

over land or impervious surfaces and does not percolate into the ground. As the runoff flows 

over the land or impervious surfaces (paved streets, parking lots, and building rooftops), it 

accumulates debris, chemicals, sediment or other pollutants that could adversely affect water 

quality if the runoff is discharged untreated. The primary method to control stormwater 

discharges is the use of best management practices (BMPs). In addition, most stormwater 
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discharges are considered point sources and require coverage under a National Pollutant 

Discharge Elimination System permit (U.S. Environmental Protection Agency, 30 Apr. 2009). 

For the past two decades the rate of land development across the country has been more 

than twice as high as the rate of population growth. If unchecked, the increased impervious 

surface (paved roadways and parking lots) associated with this development will increase 

stormwater volume and degrade water quality, which can harm lakes, rivers, watersheds, and 

local ecology.  The best way to mitigate stormwater impacts from new developments is to use 

practices to treat, store, and infiltrate runoff onsite before it can affect water bodies downstream. 

Innovative site designs that reduce imperviousness and smaller-scale low impact development 

practices dispersed throughout a site are excellent ways to achieve the goals of reducing flows 

and improving water quality (U.S. Environmental Protection Agency, 24 May. 2006. Web. 14 

Oct. 2009). 

 

2.2 Asphalt Pavement 

2.2.1 Production process 

Asphaltic concrete or more commonly known as simply hot mix asphalt (HMA) contains 

three main materials. The first is course aggregate such as crushed rocks and small stones. The 

second is fine aggregate such as sand or the dust washed off of crushed stones. These first two 

are generally obtained from local sources, quarries or gravel pits, and are mineralogically similar 

to the rock surrounding the future roadway. The third and most important material is the binder, 

in this investigation, bitumen.  The mixture proportion of these three main components affects 

roadway strength and durability. The requirements for both of these are based on location, 

climate, and usage of the roadway which varies city to city and state to state. While there may be 



 
 

18 
 

some variation in the mixture, typically the course aggregates and sand make up approximately 

95 percent of the mix and the binder makes up the remaining five percent by mass. 

Bitumen, the binder, also known simply as asphalt, is the residual portion left over from 

the refining process of crude petroleum. The refining process separates the bitumen from lighter 

oils and fuel oils which include: kerosene, diesel oil, butanes and the components to gasoline. 

The bitumen is composed of long chained hydrocarbons found in the crude oil, which have very 

high vaporization temperatures and remain after the smaller, lighter molecules have been refined 

away (Speight, 2006). The types and content of the long chained hydrocarbons found in bitumen 

varies batch by batch because the crude oil, from which bitumen is derived, varies by depth and 

content of the different oil fields around the world (Asphalt Insitute, The, 1990). At room 

temperature the bitumen binder is solid because of its high viscosity and must be heated to a 

temperature of approximately 150˚C before it becomes liquid and properly workable. 

Two types of hot mix asphalt are used in the construction of roadways: virgin asphalt and 

reclaimed asphalt pavement. Virgin asphalt is comprised of aggregates, either recycled from 

other projects or freshly quarried, as well as bitumen binder directly from the refining process. 

Reclaimed asphalt pavement (RAP) is pavement which has been removed from the roadway and 

typically reprocessed. RAP contains both asphalt binder and aggregates. The RAP is generated 

during reconstruction and repaving when layers of the road surface are milled off or the full 

depth of asphalt pavement is removed. After this collection process the RAP is brought to a 

central facility to be processed before it can be reused as pavement. This process involves 

crushing, filtering and optionally mixing in an additive to change its properties such as binder, 

aggregate or various rejuvenating and softening compounds (ASTM, 1980). 
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2.2.2 Chemical composition 

 The constituents of concern in this investigation come from the materials from which the 

pavement is created. The aggregate is typically from local sources so it is not of human or 

ecological concern. However, the bitumen binder is composed of long chained hydrocarbons 

which could be of concern. 

 Virgin asphalt contains only aggregates and binder. So its constituents of concern come 

only from the binder.  RAP however contains pollutants, deposited on the road surface during 

use, and possibly rejuvenating agents in addition to aggregates and binder. Thereby constituents 

of concern in RAP could also come from these two additional sources which are not involved in 

the creation of new hot mix asphalt.  

Pollutants and concentrations on the road surface are linked to traffic and usage. Sources 

include vehicle exhaust, tire wear, accidents, lubricating oils, and deicing operations, among 

others (Mangiani, 2003). These will contain various sized hydrocarbons, metals, and salts. 

Hydrocarbons, specifically polycyclic aromatic hydrocarbons, are present in exhausts, fuels, and 

oils. Copper is present in brake linings, cadmium in tires, and zinc in roadway barriers and tires. 

Sodium, calcium, and chlorine, as salts, are found in winter time deicing compounds as well as 

zinc and cadmium but not to the same extent.  

The rejuvenating agents added to reclaimed asphalt mixes are usually comprised of 

simple paraffins.  These are “soft” asphalts and small, monocyclic hydrocarbons and are used to 

increase viscosity. These materials are typically found in most asphalt binders. The purpose of 

these rejuvenating agents is to restore the binder compounds which are leached out of asphalt by 

time and water. As these are present in virgin asphalt mix, they shall not be considered a 

complicating factor in the analysis. 
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Tests of Reclaimed Asphalt Pavement (RAP) would account for both pollutants deposited 

on the surface of roadways as well as any pollutants still remaining in asphalt. One such series of 

tests was performed in Florida. The tests were performed in leaching columns using deionized 

water and other leaching agents intended to mimic the most severe natural precipitation cases, 

such as an acid solution to mimic acid rain. These experiments concluded that the highest 

concentration leachate coming off of the asphalt was the polycyclic aromatic hydrocarbon (PAH) 

Anthracene at 2100 micro-g/L. Other important leached constituents were Benzo[a]pyrene at 0.2 

micro-g/L, Pyrene at 210 micro-g/L, and Benz[a]anthracene at 4 micro-g/L (Brantley, 1999).  

Polycyclic aromatic hydrocarbons found in roadway runoff and first flush stormwater 

collection analysis include the four constituents above as well as many others. In varying 

concentrations these include; Benzo(ghi)perylene,  Chrysene, Coronene, Dibenz(ah)anthracene, 

Fluoranthene, Fluorene, Indeno(cd)pyrene, Naphtalene , Phenanthrene and Pyrene (Mangiani, 

2003) (Krein, et al., 2000).  

It is important to note that the polycyclic aromatic hydrocarbons listed above should not 

be present in the residual portions of the refining process because of their small molecular size. 

This means that bitumen straight out of the refinery should not contain any of these constituents. 

These compounds which the above tests found in runoff and in leaching column samples could 

either come from roadway usage or the changed chemical composition of bitumen binder due to 

asphalt production.  

 

2.2.3 Extent of Use  

 Hot mix asphalt (HMA) is a widely used paving material in the United States. There are 

many types of pavers besides asphalt including Portland concrete and tarmac. Asphalt paving has 
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been the primary paving technique in the United States since the 1970s. Since at least 1909 roads 

in the United States have been paved with asphalt.  95% of the estimated 4 million kilometers of 

paved roads in the US are currently paved with asphalt.  According to the Federal Highway 

Administration 80% of the RAP removed each year during repaving projects in the United States 

is reused in roadway construction. This totals approximately 73 million tons of RAP every year 

(Federal Highway Administration (FHwA), 1997). Asphalt is widely used and widely recycled 

therefore asphalt pavement and its effects on water quality should be better understood to protect 

human health and the health of the ecosystems surrounding roadways. 

 

2.3 Ecological and Health Concern of Constituents 

The majority of products deposited into the environment by the asphalt paving process 

are thought to be products of pyrolysis (a form of incineration that decomposes organic materials 

by heat in the presence of oxygen) of tiny branches of asphaltenes. Asphaltenes are large, bulky 

hydrocarbons with wildly variable and highly branched structures that make the asphalt 

composition resist cracking by lying between long-branch bituminous hydrocarbons. This 

pyrolysis generates a wide variety of hydrocarbons of variable size and stability. This report will 

be concerned with three products: benzo[a]pyrene, pyrene, and anthracene, due to their high 

toxicity and ease of detection with HPLC. 

Benzo[a]pyrene, pyrene, anthracene, and other similar pyrolysis products are not water-

soluble. Their only point of entry into ecological systems as well as stormwater systems is 

generally thought to be by sorbing from fine particulate matter in the immediate area of the 

location of the pyrolysis. This model is substantiated by the discovery of PAH accumulation on 

silty river beds and other such locations (Sutton, 2009).  
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The principle of biological magnification or bioaccumulation states that the concentration 

of substances in an ecology can increase across the higher ends of the food chain because many 

deleterious compounds (such as PAHs) cannot be broken down by metabolic processes. Ergo, 

this can unbalance entire ecologies: toxic products can affect predators higher up in the food 

chain (Sutton, 2009) by inducing cancer or even death. Groundwater contaminated with PAHs 

has the potential to affect human populations by this mechanism via accumulation of toxic 

products in livestock and comestible plants (Karacık).  

The general heading of PAHs will be considered together because of their tendency to 

behave as endocrine-disruptors. This tendency is due to the fact that many hormones, cell-

signalers, and steroid derivatives have similar, bulky multi-ringed structures. PAHs therefore 

have the potential to act as enzymatic inhibitors with the capability of disrupting a number of 

important biological processes, such as tumor suppression and programmed cell death. 

A general concern is growing regarding the presence of benzo[a]pyrene (BaP) in 

groundwater. BaP is one of the only PAHs recognized by the International Agency for Research 

on Cancer as a definite carcinogen. BaP appears to enter the environment mainly through 

combustion of fuels, burning of coal, and the laying of asphalt. This contaminant has a strongly 

cytotoxic effect in concentrations over 0.25*10-6g due to its metabolic products (Tarantini, 

2009). Upon ingestion, BaP is converted to a diol epoxide by an enzyme known as cytochrome 

P450. This diol epoxide differs from BaP in that it features two hydroxyl groups and an epoxide 

oxygen (see figure 2.1). This reaction occurs in order for a cell to be able to “clean up” the 

compound better through metabolism; however, the production of this metabolite is actually the 

source of the compound’s toxic properties.  
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Figure 2.1 – An Epoxide 

 

The diol epoxide metabolite has the particular capability to insert itself into a double 

helix and break strands of DNA by binding with guanine nucleotides, as shown below in figure 

2.2.  Studies of workers in tin mines and aluminum factories have revealed a relative risk of 1.8-

2.7 and 2.0-6.7 for cancers of the lungs and bladder, respectively (Mastrangelo, 1996). The BaP 

carcinogenicity mechanism is perhaps the best understood due to its high toxicity.  Several 

sources in scientific literature suggest that other PAHs have a similar pathology of harm 

(McCarty, et al., 2009). Complexing of PAHs and DNA could result in the mutation of regions 

of exposed DNA that are involved in the production of cellular reproduction inhibition factors or 

tumor inhibitors. The mutation of these inhibition factors and tumor inhibitors , such as p53, a 

gene classically referred to as the “guardian of the cell” which protects it from becoming 

cancerous, is the cause of the vast majority of cancers (Ruggeri, 1993).  
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Figure 2.2 ‐ A Benzo[a]Pyrene‐diol‐epoxide (right, rotated) interacting with a guanine nucleotide (planar) 

 

The absorption of generalized benzene-soluble (that is, non-polar) material is the 

benchmark for maximum accumulation for PAH, as there is no specific guideline regarding those 

compounds. The current limit imposed by the EPA is 0.2mg/m3. This is a gaseous measure; there 

is no aqueous concentration limit. Constant exposure to PAH in heavy industry workers revealed 

a 1.2-1.4 relative risk for development of lung cancer and a 2.2 relative risk for bladder cancer, 

as shown in Table 3.1 below (Mastrangelo, 1996). One previously-overlooked concern is that the 

majority of studies of PAH take into account only single exposure to one pure compound, 

whereas most carcinogenesis by PAHs are likely to be caused by a prolonged exposure to a 

complex mixture of compounds acting in concert.  
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Table 2.1 ‐ Cancer in Asphalt Paving Industry 

Author, country, and 
occupation 

Number of 
study 
subjects 

Dates of case 
ascertainment 

Type or site of 
condition 

Number of 
deaths or cases 

Risk ratio 95% CI or P 
value 

Hansen (1989a), 
Denmark, mastic asphalt 
workersb 

679 1959–1986 All cancers 74 SIR 1.95c 1.53–2.44 

    Lung cancer 27 SIR 3.44d 2.27–5.01 

    Mouth 2 SIR 11.11d 1.35–40.14 

    Oesophagus 3 SIR 6.98d 1.44–20.39 

    Rectum 7 SIR 3.18d 1.28–6.56 

Hansen (1991), 
Denmark, mastic asphalt 
workerse 

679 1959–1986 All causes 148 SMR 1.57d 1.34–1.85 

    All cancers 62 SMR 2.29d 1.75–2.93 

    Lung cancer 25 SMR 2.90d 1.88–4.29 

    Non-lung cancer 37 SMR 2.00d 1.41–2.76 

    Bronchitis, 
emphysema, asthma

9 SMR 2.07d 0.95–3.93 

Engholm et al. (1991), 
Sweden, paversf 

2572 1971–1985 All causes 96 SMR 0.69 NR 

    All cancers 47 SIR 0.86 NR 

    Stomach cancer 5 SMR 2.01 NR 

    Stomach cancer 6 SIR 2.07 NR 

    Lung cancer 7 SMR 1.10 NR 

    Lung cancer 8 SIR 1.24 NR 

Bender et al. (1989), 
USA, highway 
maintenance workersg,h 

4849 1945–1984 All causes 1530 SMR 0.9 0.86–0.96 

    All cancers 274 SMR 0.83 0.73–0.94 

    Lung cancer 57 SMR 0.69 0.52–0.90 

    Mouth, pharyngeal 
cancer 

2i SMR 11.10 1.30–40.10 

    Gastrointestinal 
cancer 

3j SMR 5.82 1.20–17.00 

    Prostate cancer 11k SMR 2.98 P < 0.01 

    Kidney, bladder, 
other urinary organ 
cancers 

7l SMR 2.92 1.17–6.02 

    Leukaemia 8m SMR 4.49 1.94–8.84 

Partanen et al. (1997), 
Finland, road pavers 
(males only) 

    Lung cancer NR SMR 1.5 1.2–1.9 

    Lung cancer NR SIR 1.4n 0.9–1.9 

Table from National Institute for Occupational Safety and Health (Wess) 
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This data demonstrates that exposure to asphalt fumes poses a serious health risk. While 

this project is mostly concerned with runoff from asphalt, it can be surmised that because the 

PAHs that result from pyrolysis are nonpolar and they run off in water, fine particulate matter 

has sorbed the PAHs that would be in the fumes otherwise. The compounds in the fumes are very 

likely the same as those found in runoff due to pyrolysis. The wide varieties of cancer caused by 

the fumes imply that they tend to cause cancer in all systems involved in ingesting and 

processing the fumes and their toxic products, especially the mouth and throat (particularly 

visible in Hansen and Bender’s data by examining the risk ratios). 

 

2.4 Stormwater Policy 

The National Pollutant Discharge Elimination System (NPDES) Stormwater Program 

regulates stormwater discharges from several sources.  The 1972 amendments to the Federal 

Water Pollution Control Act (known as the Clean Water Act or CWA) provide the statutory basis 

for the NPDES permit program and the basic structure for regulating the discharge of pollutants 

from point sources to waters of the United States. Section 402 of the CWA specifically required 

the EPA to develop and implement the NPDES program.  The CWA gives the EPA the authority 

to set effluent limits on an industry-wide (technology-based) basis and on a water-quality basis 

that ensures protection of the receiving water. The CWA requires anyone who wants to discharge 

pollutants to first obtain an NPDES permit, or else that discharge will be considered illegal.  The 

CWA also allowed the EPA to authorize the NPDES Permit Program to state governments, 

enabling states to perform many of the permitting, administrative, and enforcement aspects of the 

NPDES Program. In states that have been authorized to implement CWA programs, the EPA still 
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retains oversight responsibilities (U.S. Environmental Protection Agency, 10 Feb. 2009. Web. 13 

Oct. 2009). 

Three potential sources covered by the NPDES Stormwater Program are: municipal 

separate storm sewer systems (MS4s), construction activities, and industrial activities. This 

project will be focusing mostly on MS4s, particularly paved roadway runoff.  This permitting 

mechanism is designed to prevent stormwater runoff from washing harmful pollutants into local 

surface waters such as streams, rivers, lakes or coastal waters (U.S. Environmental Protection 

Agency, 2 Dec. 2008. Web. 14 Oct. 2009). 

Polluted stormwater runoff is commonly transported through MS4s, from which it is 

often discharged untreated into local waterbodies. To prevent harmful pollutants from being 

washed or dumped into an MS4, operators must obtain a NPDES permit and develop a 

stormwater management program.  There have been two separate phases enacted by the U.S. 

Environmental Protection Agency since the inception of the Clean Water Act that deal with the 

NPDES permitting.  Phase I, issued in 1990, requires medium and large cities or certain counties 

with populations of 100,000 or more to obtain NPDES permit coverage for their stormwater 

discharges.  Phase II, issued in 1999, requires regulated small MS4s in urbanized areas, as well 

as small MS4s outside the urbanized areas that are designated by the permitting authority, to 

obtain NPDES permit coverage for their stormwater discharges. Generally, Phase I MS4s are 

covered by individual permits and Phase II MS4s are covered by a general permit. Each 

regulated MS4 is required to develop and implement a stormwater management program 

(SWMP) to reduce the contamination of stormwater runoff and prohibit illicit discharges. An 

MS4 is defined as a conveyance or system of conveyances that is: owned by a state, city, town, 

village, or other public entity that discharges to waters of the U.S.; is designed or used to collect 
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or convey stormwater (including storm drains, pipes, ditches, etc.); is not a combined sewer; and 

is not part of a Publicly Owned Treatment Works (sewage treatment plant) (U.S. Environmental 

Protection Agency, 30 Apr. 2009). 

The EPA outlines six minimum control measures for BMPs required for MS4s.  They 

include public education, public involvement, illicit discharge detection and elimination, 

construction, post-construction, and pollution prevention (U.S. Environmental Protection 

Agency, 9 Jan. 2008. Web. 14 Oct. 2009). Public education is an important portion of 

stormwater BMPs because stormwater runoff is generated from dispersed land surfaces—

pavements, yards, driveways, and roofs.  Therefore, efforts to control stormwater pollution must 

consider individual, household, and public behaviors and activities that can generate pollution 

from these surfaces.  These common individual behaviors have the potential to generate 

stormwater pollution:  

 littering  

 disposing of trash and recyclables  

 disposing of pet-waste  

 applying lawn-chemicals  

 washing cars,  

 changing motor-oil on impervious driveways  

 household behaviors like disposing leftover paint and household chemicals 

 

It takes individual behavior change and proper practices to control such pollution. 

Therefore it is important to make the public sufficiently aware and concerned about the 

significance of their behavior for stormwater pollution, through information and education, that 
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they change improper behaviors.  Phase II MS4s are required to educate their community on the 

pollution potential of common activities, and increase awareness of the direct links between land 

activities, rainfall-runoff, storm drains, and their local water resources. Most importantly the 

requirement is to give the public clear guidance on steps and specific actions that they can take to 

reduce their stormwater pollution-potential (U.S. Environmental Protection Agency, 17 Sept. 

2008. Web. 14 Oct. 2009). 

Phase II MS4s are required to address post-construction stormwater runoff from new 

development and redevelopments that disturb one or more acres. This primarily includes 

developing strategies to implement a combination of structural and non-structural BMPs, an 

ordinance to address post-construction runoff, and a program to ensure adequate long-term 

operation and maintenance of BMPs (U.S. Environmental Protection Agency, 24 May. 2006. 

Web. 14 Oct. 2009). 

 

2.5 Literature Review Conclusion 

 The background presented above served as a basis for understanding the material 

addressed in this project.  A broad overview of the current state of policy and concern regarding 

toxic petroleum hydrocarbons lead to the conclusion that more investigation was needed into the 

matter.  Through researching the current knowledge of chemicals known to leach from asphalt 

pavement, the three constituents of most concern were selected for this project.  The processes 

through which they were analyzed can be found in the methodology section of this report, which 

follows in chapter 3.   
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3. Methodology 

3.1 Overall Methodology 

The methodology for this project consisted of several phases.  The first phase was 

comprised of general research into current stormwater management practices, the composition 

and production process of hot mix asphalt, and the constituents known to be present in asphalt.  

Academic papers investigating both laboratory leaching column tests and field tests of asphalts 

were considered.  From the obtained list of chemical compounds found in asphalt, further 

research was conducted into the harmful health effects of each chemical, and the current 

governmental policy and regulations regarding these constituents.  This led to the selection of 

three constituents of most concern; pyrene, benzo(a)pyrene and anthracene.  Standards for these 

three chemicals were then ordered to be used for future laboratory test comparison. 

 The second phase of the investigation consisted of stormwater sample collection and 

laboratory sample creation.  Stormwater samples were collected from local roadways during a 

rainstorm, and the collection process is detailed in section 3.2.  To add a level of control and 

sample comparison, multiple asphalt samples were created in the laboratory for testing.  Two 

mix designs were used: one of virgin hot mix asphalt, and one using reclaimed asphalt pavement.  

The process followed for the creation of the asphalt samples is explained in section 3.3.  

Laboratory procedures were then developed to generate runoff samples from the created asphalt 

cylinders.  These were designed to mimic stormwater runoff in both realistic and worst case 

scenario runoff situations.  The procedures followed for generating the laboratory water samples 

are found in section 3.4.   

The third phase of this project consisted of testing the samples.  Laboratory testing was 

required to properly analyze the constituent content of the collected and generated samples. 
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Three different laboratory analysis procedures were used.  The first level of testing was 

performed using fluorometry.  Fluorometry was the most general and least precise analysis 

method used and served as a baseline indicator for the presence of conjugated carbon ringed 

molecules in the samples. The samples were then analyzed using high performance liquid 

chromatography (HPLC) and compared to the constituent standards to obtain a better 

representation of the chemical composition of the samples. To supplement the data produced 

through on-site analysis, a selection of samples were sent to a third-party laboratory for total 

petroleum hydrocarbon (TPH) testing to determine the total concentrations of petroleum 

hydrocarbons.  A description of the procedures followed for the fluorometry and HPLC testing 

can be found in section 3.6. 

 The final phase of this project consisted of a comparison of the results obtained from the 

various analyses (presented in chapter 4) to current policy and governmental standards.  A 

discussion of the findings and proposed policy change can be found in chapter 5. 

 

3.2 Stormwater Runoff Sample Collection 

3.2.1 Collection Preparation 

A list of sites was compiled for sample collection based on a list of criteria to encompass 

locations of different roadway conditions with the hope of collecting stormwater samples with a 

high degree of content variation.  The factors used for site determination included land use in the 

area, asphalt condition, pavement age, and traffic patterns.  Additional consideration was paid to 

the ease of access to the site, and safety of the sample collector.  Sample sites were selected in 

the area surrounding the WPI campus.   
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Table 3.1 contains the collection sites that were selected, and their associated criteria.  

The Grove St. and Faraday St. site was valued for its old pavement age, poor condition and 

industrial land use in the area.  Drury St. and Park St. was selected primarily because it is a 

highly trafficked road.  The Highland St. and Harvard St. samples were selected because the road 

was freshly paved. 

 

Table 3.1 ‐ Sample Collection Sites & Criteria 

 

Weather forecasts were monitored to anticipate a storm with significant enough rainfall 

for collection purposes.  The ideal weather situation was determined to be a period of heavy 

precipitation following a lengthy dry period to maximize the concentration of deposited 

constituents in roadway runoff.  Sample collection was performed during the first-flush period of 

the rainstorm, in order to collect the highest concentration of constituents.  The following 

materials were used in the field for sample collection and storage:  two sterile 40mL glass vials 

per site, one sterile 1 L plastic container per site, a collection scoop, a plastic funnel for 

transferring samples, labels, and a travel cooler for sample preservation. 

 

Collection Site Land Use Pavement 
Condition 

Pavement 
Age 

Traffic 
Level 

Grove St. & Faraday Industrial Poor, Rutted, 
Broken Edges, Pot 
Holed 

Oldest of 
Samples 

Low 

Drury St. & Park St. Residential Fair, Worn, Few 
Patches 

Second 
Oldest of 
Samples 

Very High 

East of Highland St. 
& Harvard St.  

Public/ Business New < 1 Week 
Old 

Moderate to 
High 

West of Highland St. 
& Harvard St. 

Public/Business New < 1 Week 
Old 

Moderate to 
High 
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3.2.2 Sample Collecting Procedure 

 Once at the desired roadway collection field site, exact collection points were determined 

based on several factors.  Gutters and areas of heavy sedimentation were avoided. When 

possible, flowing runoff was selected for collection over pooled stormwater.  Additionally, 

longer runoff flows were desirable due to the flow passing over a larger surface area of 

pavement. 

The collection scoop was used to capture the flowing stormwater by placing it directly in 

the path of flow. Care was taken to prevent any large sediment or debris from entering the 

sample containers.  The sample was then transferred into the 40 mL vials and 1 L container from 

the collection scoop using the plastic funnel.  This process of collection was repeated as 

necessary until both 40 mL vials and the 1 L container were filled with stormwater runoff.  Each 

sample container was then labeled with the date and time of collection, as well as the site 

location information.  The sample containers were stored in the travel cooler until returning from 

the field.  The samples were then refrigerated to preserve them for subsequent laboratory 

analysis.   

 

3.3 Production of asphalt samples 

  Laboratory samples of virgin hot mix asphalt pavement and reclaimed asphalt pavement 

were created to analyze and compare the constituent content of the differently aged pavements.  

Virgin asphalt samples were desired for analysis because the chemical content of freshly created 

samples would not contain any roadway pollution put down by vehicle traffic or chemical spills 

that may be present in the field samples collected.  Conversely, reclaimed asphalt pavement 

began as virgin hot mix asphalt and throughout its lifetime of use collected roadway pollution.  
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The increased age of the reclaimed material could also produce a different chemical content in 

comparison to virgin asphalt.  The rejuvenation process of the reclaimed asphalt pavement can 

also produce different constituents in the material due to the addition of more bituminous binder, 

or the continuation of chemical reactions in the reheating of the material. 

 

3.3.1 Pre-mix preparations 

 Reclaimed Asphalt Pavement (RAP) was obtained from Aggregate Industries (AI), one of 

the leading companies in the construction industry.  Aggregate Industries produces a wide range 

of construction materials including aggregates, asphalt, ready-mixed concrete, and reclaimed 

asphalt pavement.  The RAP used in the laboratory samples created was most likely recycled 

from roadways in the Northeast of the United States.  In order to directly compare the different 

contaminants leaching from the RAP and virgin asphalt samples, the mix proportions for the 

virgin batch were designed to match the RAP mix as closely as possible.  The virgin asphalt mix 

design was created to match the known binder content of the selected RAP mix, which was 6% 

binder by mass.  The aggregate gradation of the obtained RAP mix was unknown.  Without this 

information a typical aggregate gradation was selected for the virgin asphalt mix design. Figure 

3.1 shows a sample of the RAP material used, as well as the three different aggregate types 

selected for the virgin asphalt mix.   
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Figure 3.1 ‐ RAP & Aggregate Samples 

 

 From left to right, AI RAP, crushed rock dust, sand, and crushed rock aggregate are 

depicted in the figure.  Tables 3.2 and 3.3 contain the breakdown by percentage and mass of each 

material used in the production of these mix designs.  While only 6.0 kg of each RAP and virgin 

material was needed for the production of the four asphalt sample cylinders, additional asphalt 

was produced for use in the shake table experiment which is discussed in section 3.3.1. 
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Table 3.2 ‐ Virgin Asphalt Mix Design 

Material % of Total mix 

design by mass 

Mass 

Sand 42.3% 4.050 kg 

Dust 18.8% 1.800 kg 

Coarse Aggregate 7 32.9% 3.150 kg 

PG64-28 asphalt binder 6% 0.5745 kg 

 Total Batch size: 9.5745 kg 

 

 

Table 3.3 ‐ AI RAP Mix Design 

Material % Binder % of Total mix design by mass Mass 

Aggregate Industries RAP 6% 100% 9.500 kg 

 

 

3.3.2 Batching & Mixing 

3.3.2.1 Virgin Samples 

  The specified mass of each selected aggregate was measured out using a laboratory scale 

according to the mix design proportions.  The binder, measured aggregates, a 5 gallon mixing 

bowl, two gyratory compaction molds, and a mixing blade were heated to 150°C in the Despatch 

LEB Series oven.  After heating, the aggregates were combined in the 5 gallon mixing bowl.  

The bowl was then placed on a scale and the known mass of heated binder was added.  The 

binder material and the container in which it was heated can be seen in Figure 3.2 below. 
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Figure 3.2 ‐ PG64‐28 Asphalt Binder 

 

  The mixing bowl was placed in the mixer and the blade was attached.  The materials 

were mixed for 5 minutes.  After completion of mixing, two 3.0 kg samples were measured from 

the mixing bowl and placed on separate metal trays, and then were returned to the oven for 30 

minutes to be reheated to 150°C.  Once this temperature was reached the samples were 

compressed into cylinders using gyratory compaction, which is discussed in section 3.2.3. 

 

3.3.2.2 AI RAP Samples 

  Two 3.0 kg samples of Aggregate Industries reclaimed asphalt pavement material were 

measured using a laboratory scale and placed into separate metal trays.  The two samples and 

two gyratory compaction molds were then placed in the oven and heated to 150°C.  Upon 

reaching this temperature, the samples were ready for gyratory compaction. 

 

3.3.3 Gyratory Compaction 

  The 6-inch compaction molds were assembled, and a contact paper was placed in the 

bottom of each mold.  Each 3 kg sample of asphalt was transferred into the molds, and leveled 
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using hand tools.  A second piece of contact paper was then placed over the sample on top of the 

leveled surface.  The compaction mold was placed into the Pine Instrument Co. 6-inch gyratory 

compactor, which was set to a height control of 100 mm.  Each sample was then compacted.  

After compaction, the sample was extruded from the compactor and mold, and the temperature 

of each sample was recorded using a laser thermometer.  This process was repeated for both the 

RAP and virgin mixes, as only two gyratory compactors were available.  Figure 3.3 below shows 

the gyratory compactor with a sample cylinder extruded and cooling above the machine. 

 

 

Figure 3.3 ‐ Pine Instrument Gyratory Compactor & Extruded Sample 
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3.3.4 Sample Cooling & Storage 

 Each sample was allowed to cool for 30 minutes after being extruded from the mold 

while still sitting on the gyratory compactor.  After cooling, the mass of each sample was 

measured again.  Each sample was then labeled with its number, mix design, date, and mass.  

The samples were placed on a shelf overnight for storage.  Table 3.4 contains the temperature of 

each sample upon extrusion, as well as the final masses of the samples after compaction. 

 

Table 3.4 ‐ Sample Cylinder Temperatures & Final Masses 

Sample Extruded Temperature Mass 

AI RAP cylinder 1 91°C 2.9900 kg 

AI RAP cylinder 2 94°C 2.9746 kg 

Virgin cylinder 1 113°C 2.9937 kg 

Virgin cylinder 2 91°C 2.9855 kg 

 

3.4 Laboratory Experiments on Prepared Asphalt Samples 

3.4.1 Shake Table Procedure 

  This experiment was designed to produce high constituent content samples.  The shake 

table used for this procedure was a Lab Line Instruments Orbit Shaker.  A shake table is a 

mechanical apparatus designed to mix liquid samples at a constant rate for extended periods of 

time.  The asphalt material in question was allowed to mix in water on the shake table for 125 

hours to increase the rate of leaching of constituents from the asphalt binder.  

  Eight 250 ml opaque plastic Nalgene sample bottles were used for this experiment.  To 

prepare the samples, 3 Nalgene bottles were filled with 150 g of virgin sample material each and 

3 bottles were filled with 150 g of AI RAP sample material.  The bottles were labeled virgin 1-3, 
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and AI RAP 1-3, respectively.  Additionally, one sample bottle was filled with 150 g of the 

aggregates used in the virgin asphalt mix design, in the same proportions, to be used as a control.  

150 ml of Poland Springs water was then added to each of the sample bottles, including the 

eighth bottle which served as a control.  Poland Springs water was selected for use due to its 

consistent mineral content and PH level, as a better control over the variable contents of rain 

water.  

 Samples 1 and 2 of both the virgin and AI RAP samples were secured on their sides onto 

the shake table.  The two control samples were also placed on their sides on the shake table.  The 

third samples of both AI RAP and virgin material were secured vertically to the shake table.  The 

shake table was then turned on and set to 100 rpm.  The samples were allowed to shake for 125 

hours.  Figure 3.4 and Figure 3.5 below show the location of the sample bottles on the shake 

table and the shake table turned on and set to 100 rpm. 

 

 

Figure 3.5 ‐ Instrument Panel        Figure 3.4 ‐ Shake Table Setup 
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3.4.2 Circulating Water Procedure 

  The circulating water experiment was designed to represent field conditions for 

stormwater flowing over the surface of asphalt pavement.  The following materials and 

equipment were required for this experiment: 

 2 Cole Parmer Masterflex pumps 

 4 rubber intake and outflow tubes 

 Glass sample bowl 

 Vacuum grease 

 Wooden cover 

 Poland Springs water 

Figure 3.6 below shows one of the Cole Parmer Masterflex pumps used in this experiment and 

its controller.  Two pumps were used in this experiment to increase the flow rate of the water 

circulating around the asphalt sample cylinder, thus increasing the volume of water passing over 

the surface area of the sample.  This was to increase the rate of constituents being released into 

the sample water. 
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Figure 3.6 ‐ Cole Parmer Masterflex pump 

  The rubber intake and outtake tubes were connected to each pump.  The intake tubes 

were taped to the inside of the glass sample bowl, with the end located 1 inch below the top of 

the asphalt sample cylinder when placed in the bowl.  The pump outflow tubes were located with 

their ends against the container wall at the bottom of the asphalt cylinder and were also taped in 

place.  Figures 3.7 & 3.8 show the location of the intake and outtake tubing inside of the sample 

container. 

 

Figures 3.8 ‐ Outflow Tubing        Figure 3.7 ‐ Pump Intake 
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   The glass sample bowl was selected for this experiment because the interior contained 

three points elevated from the bottom of the bowl which the asphalt cylinder rested on and 

allowed water to freely flow beneath the sample.  Then 1.5 L of Poland Springs water were 

added to the sample container before the asphalt cylinder.  This allowed the pumps to fill before 

the addition of the asphalt sample.  The pumps were then turned on and set to the maximum 

output of 100 rpm and the pumps and tubing were allowed to fill.  Once full, the pumps were 

shut off and the sample asphalt cylinder was placed in the bowl, resting on the three glass points.  

Vacuum grease was applied to the top lip of the sample container and the container was sealed 

using a piece of plywood with notches cut in it to accommodate for the intake and outtake pump 

tubing.  The pumps were then turned on and water was circulated around the asphalt sample for 3 

hours and 45 minutes.  After the specified time period the pumps were turned off, the asphalt 

cylinder was removed, and the water was collected into 1 qt containers to be used for later 

laboratory analysis of its contents.  Figure 3.9 depicts the entire circulating water setup. 

 

Figure 3.9 ‐ Circulating Water Experiment Setup 
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3.5 Sample Storage & Preparation for Analysis 

 All samples collected from the field or produced in the lab were stored in dark, 

refrigerated conditions until they were analyzed.  Sterile, conical test tubes were filled with  

40 mL of every sample, pressure-filtered through 0.45 micron filters, to be used for HPLC 

analysis, which is discussed in section 3.6.3. 

 

3.6 Sample Analysis Procedures 

3.6.1 Constituent Selection 

 Representative petroleum hydrocarbons were selected to be analyzed in order to establish 

a baseline measure for asphalt runoff toxicity and environmental impact. Scientific literature 

provided a list of materials commonly found in reclaimed asphalt pavment from which suitable 

candidates were drawn (Krein, et al., 2000). Desirable candidate compounds had to exhibit the 

following features in order to be selected for analysis: detectable concentrations via the analysis 

methods selected, high toxicity, a tendency to bioaccumulate, and a large base of knowledge 

regarding the compound in scientific literature.  The following is a list of polycyclic aromatic 

hydrocarbons typically found in asphalt runoff (Mangiani, 2003): 

 Acenaphthene 

 Acenaphthylene 

 Anthracene 

 Benzo(a)anthracene 

 Benzo(b)fluoranthene 

 Benzo(k)fluoranthene 

 Benzo(g, h, i)perylene 
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 Benzo(a)pyrene 

 Chrysene 

 Dibenzo(a, h)anthracene 

 Fluoranthene 

 Fluorene 

 lndeno(1,2,3,-c,d)pyrene 

 Naphthalene 

 Phenanthrene 

 Pyrene 

The constituents contained in this list were cross-referenced with chemical absorption, 

and the following compounds were selected for analysis because they met all of the designated 

criteria; anthracene, benzo[a]pyrene, and pyrene. 

 

3.6.2 Fluorometer Testing Procedure 

  A fluorometer is a tool which calculates the emission of fluorescence of molecules in 

solution. In particular, molecules that feature delocalized electrons (electrons from atoms in 

double bonded configuration next to single bonded atoms would be considered delocalized). This 

is highly useful for the purposes of this project, as petroleum hydrocarbons can feature several 

carbon ring systems which are highly delocalized, leading to a strong emission of fluorescent 

light when the molecules are “excited” by light energy. This assay therefore provided an 

excellent metric of sample contamination by most petroleum hydrocarbons.  A 10-AU field 

fluorometer, shown in Figure 3.10, was used for this analysis, which provided a numeric value 

for total fluorescence absorbance.  
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The samples selected for fluorometry testing were transferred from their original 

containers into small, labeled glass test tubes.  One test tube was used for each sample to be 

tested, and each test tube was filled approximately halfway.  The fluorometer was turned on, and 

set to the crude oil setting.  Before each sample was inserted into the machine, a Kim wipe was 

used to remove any foreign matter from the outside of the sample test tube that may disrupt the 

fluorescence reading.  The sample receptacle cap on the fluorometer was removed, and a test 

tube containing a sample was inserted, and then the cap was replaced.  The fluorescence value of 

the sample was allowed to stabilize on the fluorometer, and then the value was recorded.  The 

sample was then removed and this process was repeated for the remaining samples. 

 

 

Figure 3.10 ‐ 10‐AU Fluorometer 
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3.6.3 HPLC Testing Procedure 

The HPLC is a high-accuracy, low-concentration-detecting chromatograph which allows 

for the analysis of complex mixtures via separation of chemicals along their relative polarities.  

At present, this analytical technique has not been commonly used in asphalt runoff analysis. The 

resultant spectra can be compared to spectra generated from chemically pure standards. To 

identify chemicals using the HPLC, it is necessary to obtain standards for the chemical in 

question, establish optimal conditions for analysis, and then record the retention time for the 

analyte. The retention times for analytes are highly specific; retention times established in 

disparate conditions are not comparable.  A PerkinElmer HPLC machine, shown in figure 3.11, 

was used for this analysis. 

 

Figure 3.11 ‐ A PerkinElmer HPLC 
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The HPLC computer software was booted and all HPLC machinery was turned on, with 

the feed valve rotated to the closed position. Acetonitrile and deionized water were procured for 

use as solvents.  The feed valve was opened and the flow rate was set to 3 ml/s (of 100% water) 

to flush out any air bubbles.  The bubbles were tracked in drip feed tubes and extracted with a 

plastic gas syringe. Dual drip feeds were placed into a receiving jar under the HPLC with a tube-

flow crimper loosened so that approximately 1 droplet of solvent would elute from the tubes per 

second, as shown in Figure 3.12. 

 

Figure 3.12 ‐ Drip Feed Tubes & Receiving Jar 

The standard was removed from ampoule and transferred to a half-dram vial. The 

standard was then run through the HPLC column, shown in Figure 3.13, with progressively 

higher amounts of water relative to acetonitrile until a stable column pressure could be 

established while maintaining a quick retention-time. The HPLC’s pressure was constantly 

monitored to prevent over-pressurization. 
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Figure 3.13 ‐ HPLC Column 

 

The solvent mix for all three standards was determined to be approximately a 50/50 

acetonitrile/water ratio at a flow rate of 1.5 mL/s. This solvent mix was chosen because it 

provided decent peak separation and a stable bar pressure for a medium to fast flow rate. This 

yielded a retention time of 2.6 minutes for benzo[a]pyrene, 2.1 minutes for anthracene, and 1.2 

minutes for pyrene. Additionally, after the standard of benzo[a]pyrene was left in a refrigerator 

for a time period of 3 weeks, it apparently decomposed within the sample vial, yielding a 

secondary peak at 3.8 minutes. This secondary peak was also considered as a B[a]P-type peak. 
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The samples selected for analysis were subsequently placed into labeled screw-top half-

dram rubber-topped vials. The computer array for automation was set to match the ordered vials 

placed in the physical array, shown in Figure 3.14, with corresponding sample descriptions. The 

retention time for any signals was compared to the standard retention times and the 

acetonitrile/water mix was recorded. 

 

 

Figure 3.14 ‐ Sample Array with Robotic Arm (visible on left) 
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3.6.4 Laboratory Analysis 

In order to provide an additional perspective on the data, several samples were sent to 

Alpha Analytical, a local environmental laboratory located in Westborough, Massachusetts.  The 

samples were analyzed for total petroleum hydrocarbon (TPH) concentration using gas 

chromatography.  Table 3.5 below contains the samples that were sent to Alpha Analytical for 

testing. 

 

Table 3.5 ‐ Alpha Analytical Samples 

 

 

 

 

 

 This concludes the methodology utilized in this project.  The results of each of the 

laboratory analyses are presented in chapter 4.  A more in-depth discussion of the data presented 

in the results and its implications on policy and regulation can be found in chapter 5. 

# Sample 
1 AI RAP (circulating water sample) 
2 Virgin (circulating water sample) 
3 AI RAP (shake table sample) 
4 Virgin (shake table sample 
5 Grove St & Faraday St (field sample) 
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4. Results 

 This chapter contains the results of the three methods employed to test the water samples 

generated in this project.  Section 4.1 contains the results of the fluorometry testing which was 

performed on every sample, and lists the results in terms of absorbance units.  These numbers 

provide a baseline picture for the amount of hydrocarbons in the solution.  Section 4.2 shows the 

results of the samples tested using High Performance Liquid Chromatography.  The samples 

analyzed using HPLC were tested for the presence of anthracene, pyrene, and benzo[a]pyrene, 

the three constituents of greatest concern selected for this project.  Section 4.3 contains the 

results of the Alpha Analytical total petroleum hydrocarbon testing.  

 

4.1 Fluorometry Results 

  Fluorescence values from the field fluorometer were universally higher in the RAP 

samples compared to the virgin asphalt samples. Higher values of FAu indicate larger presence 

of ringed carbon. The range of values for virgin shake table samples is 116 to 310 fluorescence 

absorbance units (FAu), while the range for RAP shake table samples is 245 to 1005 

FAu.  Absorbance for field samples fell in the range of 128-174.  FAu.  Values from the shake 

table were universally higher than the circulating water, and both were higher on average 

than  the field samples. This indicates that our asphalt samples released more material than 

would be expected for regular runoff  that has already undergone preliminary washing. This can 

be seen in Table 4.1.  
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Table 4.1 Fluorometer Results 

Fluorometer Test Results 

Image # Sample 
Absorbance 

Units 
    
  Shake Table Samples   

1 Virgin 1 116 
2 Virgin 2 305 
3 Virgin 3 (standing) 310 
4 AI RAP 1 245 
5 AI RAP 2 >621.2 

AI RAP 2 – half diluted with DI water 502 
6 AI RAP 3 (standing) >621.2 

AI RAP 3 – half diluted with DI water 410 
    
  Shake Table Controls   

7 Water 7.33 
8 Water & Aggregate 25.6 
    
  Circulating Water Samples   

9 Virgin 1 30.6 
13 Virgin 2 33.9 
11 AI RAP 1 187 
10 AI RAP 2 217 
    
  Field Samples   

12 Grove St & Faraday St 159 

- Drury Ln & Park Ave 152 

- East of Highland St & Harvard St 174 

- West of Highland St & Harvard St 128 
    
  Fluorometer Controls   

B1 Deionized Water 4.31 
B2 Poland Springs 10.2 

Rain Water 49.3 
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4.2 HPLC Results 

 To properly interpret the output generated by the HPLC software, it is vital to 

understand the main principle of chromatography.  In all chromatography, separation of 

chemicals occurs through differences in an effect called partitioning.  Partitioning occurs due to 

differences in a compound’s concentration between two immiscible solvents as a result of the 

compound having different chemical equilibrium constants for each solvent.  These differences 

have a net effect of changing the speed at which the compound travels through the compound.  

Therefore, retention times output by the HPLC are indicative of individual compounds, with 

minor allowance for highly similar chemicals “sticking” to one another in the column.  

Individual peaks that result may include several decompositions or monosubstituted variations of 

the main species represented by the peak. 

 Analysis of these results is particularly illuminating as to the nature of RAP and virgin 

asphalt.  Comparison of these two also sheds some light on how these experimental models 

match up to real-world asphalt pavement.  Overall, RAP runoff seems to have greater complexity 

than virgin asphalt. The greater complexity is evident upon examinations of Table 4.3, based 

mostly upon discrete signals yielded in HPLC as well as more spectroscopic absorbance from 

both HPLC and the fluorometer. For example, all the RAP shaker table samples run through 

HPLC have two discrete absorbance peaks in addition to a decent magnitude of fluorometric 

absorbance, whereas their virgin asphalt shaker table counterparts have one or no peaks and a 

correspondingly lower fluorometric absorbance. The field samples indicated that small quantities 

of PAHs are leaching out of pavement, as well what appears to be a large variety of heavy 

metals, although this conclusion is a conjecture at best. 
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A visual comparison between Figure 4.1 and Figure 4.2 establishes a general trend for the 

differences between RAP and virgin asphalt samples, namely that all of the RAP shake table 

samples featured multiple integration peak signals that were more intense (at 20 and 43 mAU 

from Figure 4.1) compared to the virgin asphalt shake table samples (at 9.5 mAU from Figure 

4.2), which all had one or no peaks. Please note the difference in the value axis for the HPLC 

figures, as the HPLC data analysis software would not allow for a change in that axis for a print-

out. The added chemical complexity between the RAP and virgin samples is likely due to a 

combination of the addition of materials trapped in asphalt by vehicular pollution as well as the 

second round of incomplete combustion which occurs during the rejuvenation process. The 

circulating water tests for both RAP and virgin asphalt generated no peaks, but the FAu values 

corroborated the notion that there was less leached material present in the virgin asphalt samples 

compared to the RAP samples. The integrand values for virgin shake table samples ranged from 

8.17-96.50 integrated absorbance units (IAu), while the IAu for the RAP shake table samples 

ranged from 93 to 1191 IAu. 
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Figure 4.1 ‐ AI RAP 2 Shake‐table Sample HPLC 
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Figure 4.2 ‐Virgin 1 Shake‐table Sample HPLC 
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The field samples with a decent amount of contamination (for example, Drury Lane/Park 

Ave, shown in Figure 5.3) tended to feature high complexity shown in the figure by multiple 

peaks, likely due to greater use and varied use of the pavement. The peaks in the most polluted 

field sample, Drury Lane and Park Ave, shows lower intensity peaks than the shake table 

samples, as expected, and are at 8 mAU or less as seen in Figure 4.3. Therefore, the field 

samples are more complex than RAP and virgin asphalt laboratory tests. This complexity could 

come from pavement use, which results in increased asphalt breakdown from wear such as 

greater rutting and cracking of asphalt, as well as additional pollution deposition from motor oils, 

tire wear, and vehicle exhaust. 
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Figure 4.3 ‐ Drury Lane and Park Avenue Sample HPLC 
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Table 4.2 ‐ HPLC Results 

 

 
  

HPLC Results

 

Total 
Integral 
Under 7 

min. 

Complexity/ 
Number of 

peaks 

Anthracene-
Type Peak 

Height 

Benzo[a]pyren
e-Type Peak 

Height 

Pyrene-
Type 
Peak 

Height 

Field Samples 
Grove St. & Faraday St. 40.65 1 -- -- -- 
Park Ave & Drury Ln. 489.75 7 131.94 21.04 -- 
Highland St.& Harvard St. East 43.04 1 -- -- -- 
Highland St.& Harvard St. West 29.04 1 -- -- -- 

Laboratory Samples 
Virgin Shake Table 1 96.50 1 -- -- -- 
Virgin Shake Table 2 8.17 2 -- -- 8.17
Virgin Shake Table 3 No peaks 0 -- -- -- 

AI RAP Shake Table 1 1190.71 2 -- 964.53 -- 
AI RAP Shake Table 3 93.10 -- -- 93.1

Shake Table Aggregate Control No peaks -- -- -- 
Shake Table Water Control No peaks -- -- -- 

AI RAP Circulating Water 
Cylinder 1 No peaks 0 -- -- -- 
AI RAP Circulating Water 
Cylinder 2 No peaks 0 -- -- -- 
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4.3 Total Petroleum Hydrocarbons Results 

 The total petroleum hydrocarbon (TPH) test only gave concentrations for the virgin and 

RAP shake table samples. A TPH concentration was expected for the most polluted field sample, 

Drury Lane and Park Ave, but came back below the detection limit. The results do however 

mirror the fluorometry and HPLC results that RAP samples contain more petroleum 

hydrocarbons than virgin asphalt samples, these concentrations were 10200 and 8340 

microgram/L for RAP and virgin respectively as seen in Table 4.3. 
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Table 4.3 ‐ Combined Test Results 

Fluormeter  TPH  HPLC 

 
Absorbance 

Units 
Micrograms

/liter 
Total Integral 
Under 7 min. 

Complexity/ 
Number of 

peaks 

Anthracene‐
Type Peak 
Height 

Benzo[a]pyre
ne‐Type Peak 

Height 

Pyrene‐
Type 
Peak 
Height 

Field Samples 

Grove St. & Faraday St.  159 BD 40.65  1 ‐‐  ‐‐  ‐‐ 

Park Ave & Drury Ln.  152 489.75  7 131.94 21.04 ‐‐ 

Highland St.& Harvard St. East  174 43.04  1 ‐‐  ‐‐  ‐‐ 

Highland St.& Harvard St. West  128 29.04  1 ‐‐  ‐‐  ‐‐ 

Laboratory Samples 

Virgin Shake Table 1  116

8340

96.50  1 ‐‐  ‐‐  ‐‐ 

Virgin Shake Table 2  305 8.17  1 (minor) ‐‐  ‐‐  8.17

Virgin Shake Table 3  310 No peaks  0 ‐‐  ‐‐  ‐‐ 

AI RAP Shake Table 1  245

10200

1190.71  2 ‐‐  964.53 ‐‐ 

AI RAP Shake Table 2 (Projected)  1004

AI RAP Shake Table 3 (Projected)  820 93.10  2 ‐‐  ‐‐  93.1

Shake Table Aggregate Control  25.6 No peaks  ‐‐  ‐‐  ‐‐ 

Shake Table Water Control  7.33 No peaks  ‐‐  ‐‐  ‐‐ 

Virgin Circulating Water Cylinder 1  30.6 BD

Virgin Circulating Water Cylinder 2  33.9

AI RAP Circulating Water Cylinder 1  187 BD No peaks  0 ‐‐  ‐‐  ‐‐ 

AI RAP Circulating Water Cylinder 2  217 No peaks  0 ‐‐  ‐‐  ‐‐ 
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4.4 HPLC Based Concentration 

To derive a rough approximation of concentration from HPLC results, the molar 

extinction coefficient of benzo[a]pyrene was calculated from the standard. This value was 

applied to the absorbance peak height for benzo[a]pyrene in the AI RAP shake table 2 sample 

(the most polluted laboratory sample, see Figure 4.1) to act as a representative figure to compare 

to the IAu value. The multi-ringed compounds under investigation (and produced by incomplete 

combustion) all have molar extinction values within the same order of magnitude, so it would be 

fair to use this as an overall comparison. The resultant approximation yields about 9000 

microgram/L, which sits very near the TPH-derived concentration of 10200 microgram/L for the 

combined shaker table RAP sample. This figure is well over the EPA-established maximum 

contaminant level of 200 nanograms/L. 

Due to the unknown composition of the field samples, concentrations cannot be derived 

explicitly from total integration, as overlapping peaks may obfuscate or warp results based on 

how the complex mixture travels through the column. The presence of heavy metals would cause 

complexing with the electronegative portions of monosubstituted polycyclic aromatics, thus 

changing the partitioning coefficient for both compounds. In effect, this renders the extinction 

coefficient derived from standards to be inapplicable to the field samples. In light of this 

however, it would be fair to say that the peaks within a few seconds of the standard peaks 

probably retain the identity of their ring-groups, but much more extensive work using chelating 

agents would be necessary to confirm this beyond a doubt. 
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4.5 PAHs from Pyrolysis 

 Based upon review of current scientific literature, the asphalt production process, and the 

experimental data, it can be concluded that the source of the majority of PAHs involved in the 

asphalt paving process are derived from the asphalt paving process in itself, and not from the 

petroleum product or aggregate which asphalt pavement is produced from. Specifically, the 

PAHs under review are sourced entirely from incomplete combustion (pyrolysis). High 

temperature (high energy) processing of the asphalt leads to the complex mixture of light 

hydrocarbons which this investigation has been concerned with. The nature of this incomplete 

combustion in highly variable based on temperature, asphalt mix, and production methods to the 

extent that it produces products in proportions that are essentially unpredictable. The process of 

incomplete combustion is essentially the decomposition of long-chain hydrocarbons and the 

subsequent reorganization of carbon bonds once they lose their thermal energy (see Figure 5.4). 

  

 

Figure 5.4 ‐ Benzo[a]Pyrene formation. Perera, 1981. 
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The nature of pyrolysis makes predicting exact compositions of combusted material 

nearly impossible given current technology and scientific techniques. It is imperative to 

ecological health and human health that more attention be paid to the deposition of pyrolysis 

products into the environment on a large scale. A first approximation for how much B[a]P alone 

has been deposited into the environment given that there are roughly 4 million kilometers of 

asphalt paving at a conservative figure of 3.1 meters average width yields an estimation of 

approximately 3600 kilograms of deposited B[a]P. (4000000 km road)/(100 mm  per puck 

(millimeters))x10 pucks for width of road x 9000 micrograms. This figure illuminates the 

magnitude of the problem posed by compounds leaching from asphalt pavement.  

 

4.6 Policy Recommendations 

4.6.1 Roadway Paving Pollution Control 

One of the types of point sources covered by the NPDES Stormwater Program is 

construction activities.  In 1990, the EPA promulgated rules establishing Phase I of the NPDES 

stormwater program. Phase I addresses discharges from large construction activities disturbing 5 

acres or more of land.  Then, on March 10, 2003, Phase II NPDES regulations came into effect 

that extended coverage to construction sites that disturb one to five acres in size.  These 

construction activites include, among other things, roadway construction, which this project is 

concerned with. 

For construction and other land disturbing activities in areas where the EPA remains the 

permitting authority, such as Massachusetts, operators must meet the requirements of the EPA 

Construction General Permit (CGP).  CGP permit requirements include the submission of a 

Notice of Intent and the development of a stormwater pollution prevention plan (SWPPP). The 
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SWPPP must include a site description and measures and controls to prevent or minimize 

pollutants in stormwater discharges (U.S. Environmental Protection Agency, Office of Water, 

2005). 

While there are regulations in place for construction activities, they are primarily 

concerned with the associated increase in volume of runoff, as sediment runoff rates from 

construction sites are typically 10 to 20 times greater than those from agricultural lands, and 

1,000 to 2,000 times greater than those of forest lands (U.S. Environmental Protection Agency, 

Office of Water, 2005).  

They also address issues with runoff collecting harmful sediment and chemicals such as 

oil and grease, pesticides, heavy metals, and nutrients.  NPDES regulations recommend several 

BMPs, including non-structural, planning-based BMPs, as well as structural BMPs.  Structural 

BMP recommendations consist of stormwater retention methods such as catch basins and wet 

ponds which reduce the rate the runoff is released, and allows for particulates to settle out of the 

stormwater for pollutant removal.  Also included are suggestions for vegetative BMPs that 

facilitate runoff percolation and maintain natural site hydrology and healthier ecologies. These 

BMPs consist of filter strips, artificial wetlands, and rain gardens which naturally filter many 

organic pollutants from stormwater runoff before it re-enters the water supply (U.S. 

Environmental Protection Agency, Office of Water, 2005).  

All of these BMPs and regulations focus mostly on increased runoff volume associated 

with impervious surfaces, increased sediment washout from construction sites, and pollution 

from construction activities and roadway deposition.  None of them however, focus on the 

constituents present in the roadway pavement itself.  The research conducted in this project has 

lead to the finding that there are toxic PAHs that are present in asphalt pavement, and that they 
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are largely a result of the pavement creation and laying process.  This leads to the assumption 

that the largest concentration of these harmful constituents is present immediately following the 

laying of asphalt pavement.  Rather than relying on in-place remediation structures to handle the 

pollution from the roadway, a man-made first flush could be conducted on the newly paved 

surface immediately after finishing the site.  If the associated runoff was collected separately and 

removed from the site for professional treatment and not allowed to enter the stormwater 

management system, a potentially large amount of the toxic petroleum hydrocarbons could be 

removed without the surrounding ecology ever being exposed.  This pollution management 

practice could be added to the EPA’s Best Management Practices list and also be made a 

necessary practice for all permitted roadway construction projects under NPDES regulation. 

 

4.6.2 Integrated Risk Information System 

The EPA's IRIS (Integrated Risk Information System) provides a decent review of certain 

chemicals deposited into the environment.  However, the EPA only examines a handful of 

compounds per year. The process by which a compound is determined to be a mutagen or not 

relies primarily on prolonged single-compound exposure, usually always in laboratory mice.  

Additionally, the initial review process to decide whether or not to even publish an IRIS report 

for a single compound takes nearly two years by the EPA’s own standard projections (U.S. 

Environmental Protection Agency, 2005), never mind propose any regulation.  Even by its own 

admission, this process is sluggish and rife with procedural problems. In a press release from 

early 2009 regarding the IRIS reporting process, the organization claims the following: 

“For far too long the success of EPA’s IRIS program has been hampered 

by an assessment development process that took too long, was 

redundant, and was not transparent to the public. The new IRIS process 
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will be entirely managed by EPA. EPA will have final authority over the 

contents of all IRIS assessments after considering the scientific input of 

experts at other agencies and White House offices. The well established 

processes of rigorous independent external peer review and public 

review and comment will remain key components of the new IRIS 

process[…] Other highlights of the new IRIS development process 

include a streamlined review schedule, ensuring that the majority of 

assessments are posted on IRIS within two years of the start date. This 

will result in more human health assessments being available to EPA’s 

programs and regions and to other users of the IRIS database. The new 

process will no longer provide other federal agencies the opportunity to 

request suspension of an assessment process to conduct research on 

“mission critical” chemicals.” (U.S. Environmental Protection Agency, 

05/21/2009) 

This two-year framework is essentially a long, multistep process of literature review in which the 

scientific community and public are allowed to comment and submit scientific literature for 

review.  However, introducing some more structure to this process could potentially streamline 

the initial phases of report-making.  

A compound which is to be analyzed by IRIS program for carcinogenicity should first 

undergo the Ames test as a time-saving process.  The Ames test is a simple, inexpensive manner 

of testing mutagenicity of a compound using an agar plate and a bacterial colony. The mutagen 

in question is placed in the center of the plate, and the amount of bacteria produced relative to 

the control plate gives a fairly accurate measure of mutagenic quality. Instead of taking several 
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years to determine that a known carcinogen is indeed carcinogenic, the Ames test should be 

performed first and then rigorous investigation should follow. In addition, it is highly 

recommended that the Ames test be performed with a mixture of PAHs to determine multi-

component mutagenicity and whether those pathologies would work in concert.   

This combined pathology would not be suited to the bacterial (prokaryotic) model 

because the organisms lack the same cellular machinery that would be affected by the PAHs. For 

example, benzo[a]pyrene in itself is not carcinogenic, but its metabolite is highly carcinogenic. 

The enzymes which metabolize the compound would have to be present to yield a positive result 

Therefore, a model using yeast containing liver S9 (a complex fluid containing liver enzymes to 

simulate a human cell) could be used (Ames, 1973). A positive result would then proceed 

through an accelerated review process once mutagenicity was determined. 

 

4.6.3 Maximum Contaminant Levels 

  The current regulation for individual constituents consists of enforceable concentration 

recommendations from the EPA, called Maximum Contaminant Levels (MCLs). Currently, if 

constituents are found to exceed MCLs, water suppliers must notify consumers and treat their 

water supply.  This approach, while practical, does not address bioaccumulation of toxic 

materials such as those which leach into groundwater or sewer systems from asphalt pavement. 

An MCL for all PAHs could be established for non-potable groundwater which abuts important 

ecologies such as estuaries or swamps, as well as agricultural zones. This would help to protect 

human populations as well as ecologies. A reasonable figure for this MCL would fall at around 1 

microgram/L, considerably higher than the potable water limit of 200 nanogram/L for B[a]P.  No 

other individual PAHs have enforceable MCLs. 
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4.6.4 Chemical Remediation Techniques 

  In areas where non-potable sites of ecological concern exceed this proposed MCL, a 

mixture of hydrogen peroxide and ozone (peroxone) could be injected in small amounts to help 

oxidize PAHs to more biologically inert forms. Peroxone is also capable of oxidizing other 

pollutants such as methyl tertiary butyl ether (MTBE) and benzene. In areas of higher 

concentrations, a remediation hub could be created by the creation of a wood chip and soil 

compost infected with white rot fungus, which oxidizes pollutants when they are high in 

concentration (National Institute of Health, 1993). This fungus is capable of breaking down a 

large number of environmental pollutants and is otherwise biologically inert. 

 

4.7 Summary of Results 

The results confirm that RAP leaches out more material than virgin asphalt, and that 

pyrolysis products are generally not present in the field samples, which contain a very different 

variety of pollutants. The data substantiates the model of the shake table and circulating water 

tests simulating large and realistic wear (respectively) on asphalt paving. The data presented 

from the various instruments works in concert. The fluorometry data corroborates the added 

complexity indicated our HPLC results and adds another dimension of detail as well, as the 

fluorescence absorbance is sensitive almost exclusively to carbon rings. This is in contrast to the 

HPLC's utility for detection of a wide range of extremely low-concentration compounds in 

samples. The TPH results provided another dimension of detail by providing sample 

concentrations generated from a gas chromatograph.  
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5. Conclusions 

5.1 Summary of Work 

The focus of this Interactive Qualifying Project (IQP) is on asphalt pavement and its 

effects on stormwater runoff quality. The goal is to determine the extent to which asphalt leaches 

contaminants into stormwater. The areas of research consisted of which constituents are present 

in asphalt runoff, which are of primary concern, and their harmful effects on ecology and human 

health.  Additional research into current stormwater runoff management practices and their 

effectiveness at removing these constituents was also completed, as well as a study into the 

regulation and policies in place addressing these concerns.  

 The results of this project consist of policy update recommendations on emerging 

constituents with harmful effects on human life that have not yet been fully investigated or 

regulated.  The results will reexamine current stormwater collection and treatment practices and 

their effectiveness at controlling and removing the constituents of potential concern. 

The goal of this project was met through a combination of literature research, field 

sample collection, laboratory asphalt production, and chemical analysis. The project began with 

an investigation into the potential petroleum hydrocarbons present in asphalt pavement materials.  

In depth research into the harmful effects of these constituents led to a selection of three 

chemicals for further analysis.  The current policy and regulation of the selected constituents was 

investigated, and used later as a framework for additional policy proposal in conjunction with the 

laboratory findings.   

In order to explore the presence and extent of the selected constituents in asphalt 

pavement, field samples of roadway stormwater runoff were collected from local areas of 
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concern.  As a basis for comparison, laboratory samples of asphalt were made using fresh asphalt 

as well as reclaimed asphalt pavement.  Experiments were then conducted on the produced 

asphalt samples in order to generate water samples for analysis.  The experiments were designed 

for the comparison of concentration levels of constituents between cases designed for producing 

the maximum potential concentration levels, and a laboratory controlled procedure designed to 

simulate a realistic roadway runoff situation.   

The water samples collected from the field and laboratory procedures were tested using 

three different methods of analysis.  On campus, fluorometry analysis was performed in order to 

gain a baseline comparison of the level of contamination of polycyclic hydrocarbons between the 

samples. Further analysis was conducted using high performance liquid chromatography (HPLC) 

for the three constituents of main concern.  HPLC was selected because it shows overall 

chemical complexity and allows for exceedingly low detection limits.  Finally, a representative 

selection of the samples were sent to a third-party laboratory for analysis of total petroleum 

hydrocarbon (TPH) content to provide an additional layer of information regarding sample 

contamination.   

Policy recommendations were made to fill voids discovered in the current control and 

monitoring of asphalt roadway runoff based on research of current policy. 

 

5.2 Recommendations for Future Work 

5.2.1 Expanding on Current Work 

This project has drawn attention to a largely unexplored concern to public health and 

drinking water.  Due to the limitations in the scope of this IQP, there are many more questions to 

be asked concerning petroleum hydrocarbons and hot mix asphalt pavement.  The following 

contains suggestions for future expansion upon the work performed in this project, and ways to 
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further investigate and solve the problem of toxic petroleum hydrocarbons leaching from asphalt. 

One of the difficulties encountered during the project was the inability to determine 

which pollutants in the field stormwater samples came from deposition on the roadways, and 

which leached from the asphalt itself.  In continuing the work of this project, a stronger focus 

could be placed on how virgin asphalt pavement chemically breaks down over multiple rain 

events without considering the pollutants deposited on the roadway.  This could be accomplished 

using a long-term, large-scale roadway asphaltic concrete model in laboratory conditions.   

Unfortunately this was not possible due to the time and budget constraints of the project.  

By simulating first-flush situations and through periodic chemical analysis of the runoff collected, 

the rate and volume of constituents leaching from the pavement could be plotted over time.  In 

conjunction with this test, road bearing and strength testing could also be performed, simulating 

traffic loads on the roadway to analyze the effect of traffic on the breakdown of the chemical 

compounds in the asphalt.    

In order to determine which constituents come from the asphalt itself and not roadway 

pollution the results obtained from these procedures could be compared against the constituent 

analysis of field samples.  In continuing the investigation of this project, more field samples 

should be collected from a wider variety of sites which could be categorized by pavement age, 

condition, land usage, and traffic patterns. This data could be used to categorize the types of 

pollutants found in the samples collected from each roadway location and can be used to better 

determine which types of contaminants come from the asphalt pavement and which come from 

external sources.   

Estimations for concentrations and rates at which petroleum hydrocarbons leach from 

asphalt roadways could then be generated from these methods as well. This could be 
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accomplished by collecting many samples from a site during the course of a rainfall event and 

then comparing rain fall data to these samples and the results of their chemical analysis.  

 

Additionally, a more varied set of asphalt samples would be beneficial for standardizing 

the results of laboratory analysis.  Virgin asphalt samples generated from materials that came 

from as many different sources as possible (such as from different sets of oil barrels, for example) 

would better account for the variability of chemical composition in asphalts.  Also, the use of 

RAP materials from known sites, with a known original mix design of the asphalt, remediation 

techniques, its age, and site conditions, would lead to a better picture of its contents and clarify 

the implications of its chemical analysis. 

HPLC analysis may have been used to a greater extent, but time limitations and limited 

access to equipment did not make it possible to fully analyze each sample generated from this 

project.   The HPLC is a very powerful tool, and could certainly be used more effectively for 

analysis of petroleum hydrocarbons, as its very low detection limits can give a strong picture of 

the chemical makeup and concentration of a sample.  Additional methods of chemical analysis 

may be another avenue to explore if a greater budget and resources are available. 

 

5.2.2 Related Future Work 

Detection of low-concentration compounds is currently a problem which the science and 

engineering communities solve in varied ways. A cheap, high-accuracy, low-concentration 

analyte detection method could be engineered via the design of a cell which secretes a detector 

protein which fluoresces upon metabolysis of a constituent. This could be accomplished via 

protein engineering, by activating green fluorescent protein (GFP) once the detector protein 
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binds the analyte.  

The chromophore of GFP fluoresces about one hundred times brighter than most PAHs at 

a single, fixed wavelength (Soboleski, et al., 2005).  This would be highly appropriate for use in 

detection, as many constituents of concern (including all those that were assayed in the project) 

gain their mechanism of toxicity by conversion to a toxic product via protein action or by 

changing sensitive protein activity, such as in the case of endocrine disruptors (McCarty, et al., 

2009).  The utility of this would essentially be a massive signal amplification of highly specific 

analytes: B[a]P, anthracene, pyrene, bisphenol-A, many polychlorinated biphenyls, and several 

other highly significant compounds could all potentially be detected at picomolar (10*10-12 m/L) 

concentrations by commonly available fluorometers.  

Once organisms carrying these proteins were engineered, the cost would be minimal – all 

that would be required would be to maintain the health of the cell line. The process would be to 

simply transfer a small quantity of sample into a fixed number of cells, and then placing the 

sample in a fluorometer tuned to detect the specific wavelength of GFP fluorescence.  Multiple 

detectors could even be engineered into a single cell if an additional GFP chromophore were 

changed to a different color (via the various fluorescent protein chromophores available from 

Clontech), making the process even simpler by eliminating the need for multiple cell lines for 

different constituents. This detection method could be used en-site for minimal cost, and 

individual sets of cells could be cloned with ease for re-use. 

 

5.3 Conclusion 

Investigation into asphalt runoff revealed that it is a relatively unaddressed problem 

which is not being dealt with to full capacity for the protection of the environment as well as the 
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human population. In the course of the project's completion, there have been indicators from 

both our experimental data as well as research that PAHs in asphalt runoff originate from 

pyrolysis of asphaltenes during laying of asphalt, and any additional compounds, such as heavy 

metals and oils that are deposited onto asphalt during road use and leach into stormwater runoff. 

According to our fluorometry, HPLC, and TPH data, PAHs do have the capacity to leach from 

asphalt and into groundwater. Research indicated that PAHs may be bound to particulate matter 

within the asphalt and leach out over time due to surface wear and water exposure. As so little is 

known about asphaltenes, there is much research to be done to determine the extent and nature of 

this pyrolytic deposition. This research is currently greatly hindered by the extreme difficulty of 

isolating asphaltenes. 

            In reviewing current policy and regulatory procedures, several redundancies in the review 

process for compound legislation were identified and addressed alongside potential problems in 

current policy, such as PAH concentrations being measured for individual components rather 

than as a group. Techniques and procedures for lessening the impact of asphalt pavement upon 

the environment and human health were discussed in the context of harm reduction. 

            Carcinogenic and toxic compounds in water that are sourced from asphalt runoff are of 

great concern. The data and research provided points to the fact that many changes could be 

made to policy in order to reduce the penetration of these harmful compounds into the 

environment.  
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