Designing Concrete Pavements Best Practices

PaveWise Concrete Conference 2020 September 23 – 24, 2020

Eric Ferrebee, P.E. Director Technical Services American Concrete Pavement Association

Design... for What?

Lots of design considerations...

- Geometrics
- Curb and Gutter
- Shoulder

Lots of design considerations...

- Traffic
- Climate
- Drainage
- Etc.

Are consistent.

What Design Considerations are Concrete Specific?

Concrete Pavement Specific Design Considerations

- Thickness Design
 - Design Programs/Guides
 - Structural Response and Support
- Jointing
 - Joint spacing
 - Joint Layout
 - Dowel & Tie Bar Design
- Materials / Mixture Design

Concrete Pavement Specific Design Considerations

- Thickness Design
- Joint Design
- Materials / Mixture Design

AASHTOWare Pavement ME (previously known as DARWin-ME and MEPDG)

Selecting a Pavement Design Tool

Increasing Complexity = More Accurate Models & More **Optimization** Options

Concrete Pavement Structural Response / Failure

- Cracking
- Faulting
- Roughness (IRI)

What Impacts Cracking Performance?

- Pavement Thickness
- Mix Design (Strength)
- Joint Spacing
- Climate
- Lane Width
- Shoulder Design
- Support Stiffness

What Impacts Faulting Performance?

- Dowel Design
 - Size/Spacing
- Joint Spacing
- Lane Width
- Support System
 - Erodibility of Support
- Thickness (Inverse)

Increasing Support System NOT Best Optimization

Concrete Pavement Specific Design Considerations

- Thickness Design
- Joint Design
- Materials / Mixture Design

Why Joint Concrete Pavement?

Other reasons we joint concrete pavements:

- Control Cracking
- Divide pavement into construction lanes or increments.
- Accommodate slab movements.
- Provide load transfer via placed dowels.
- Provide uniform sealant reservoir.

Designing Joints

- Joint Spacing
- Joint types:
 - Contraction
 - Construction
 - Isolation (and, if necessary, expansion)
 - Transitions (PCC/AC)
- Load transfer and edge support
- Joint Layout

Undoweled - Transverse (Type A-1)

Doweled - Transverse (Type A-2)

Untied - Longitudinal (Type A-3)

Tied - Longitudinal (Type A-4)

Construction

Doweled butt - Transverse (Type B-1)

Tied butt - Longitudinal (Type B-2)

Isolation

IТ

Load Transfer / Maintaining Joint Continuity

- Aggregate Interlock
 - Maximum aggregate size..
- Mechanical connection
 - Dowel bars
 - Tie bars NOT FOR LOAD TRANSFER
- Subbase support

...is important!

Joint Design – Dowel Bar Considerations

- Goals are:
 - Faulting resistance
 - Load transfer
- .Design for Load Transfer
 - Size
 - Spacing
 - Shape
 - Material

Dowel Design Tool: http://www.acpa.org/dowelcad/

100% load transfer efficiency

Smooth dowel

Doweled butt - Transverse (Type B-1)

Doweled - Transverse (Type D-2)

Joint Design - Tiebar Considerations

- Goals are:
 - Keeping joint tight
 - NOT FOR LOAD TRANSFER
- Design for Edge Support:
 - Size
 - Spacing
 - Embedment depth
 - Material

Tied butt - Longitudinal (Type B-2)

Joint Design – Layout for Complex Geometries

Joint Layout – Intersections

• 10 Step Method for Intersections

Joint Layout – Roundabouts

• 6 Step Method for Roundabouts

http://wikipave.org/index.php?title=Joint Layout

Joint Layout – DDI

• 11 Step Method for Diverging Diamond Interchanges (DDI)

http://wikipave.org/index.php?title=Joint Layout

Concrete Pavement Specific Design Considerations

- Thickness Design
- Joint Design
- Materials / Mixture Design

Materials – Mixture Design

Performance Engineered Mixtures - https://cptechcenter.org/performance-engineered-mixtures-pem/

- Optimized gradation Tarantula Curve / Shilstone Chart
- Reduced paste content durability and shrinkage
- Minimize the use of accelerated mixtures
- Focus on project sequencing to accommodate maintenance of traffic
- Inclusion of Fibers?

Webinars and resources at https://cptechcenter.org/concrete-overlays/

Mixture Design Considerations

- Structural design concerned with:
 - Strength (resistance to cracking)
 - Flexural (modulus of rupture)
 - Compressive (cube or cylinder)
 - Stiffness (resistance to deformation)
 - Modulus of elasticity (E)
 - Property altering additions
 - Fibers
 - Chemical admixtures
 - Mineral admixtures (SCMs)

Focus in design is hardened properties such as strength and stiffness. Many of the chemical and mineral admixtures also alter fresh concrete properties.

Mixture Design Considerations

- Goals are:
 - Uniformity and consistency
 - Workability until placed
 - Ability to be consolidated
 - Ability to hold edge if slipforming
 - Finishability
 - Required strength/stiffness
 - Durability

Summary

- Many design considerations are the same
- Concrete specific design considerations:
 - Thickness Design
 - Same tools as asphalt, but different approaches!
 - Can't just increase thickness
 - Joint Design
 - Spacing matters!
 - Must design for load transfer
 - Layout for complex geometries is critical
 - Materials / Mix Design
 - Must meet design AND construction requirements

Thank You!

Any Questions?

Eric Ferrebee, P.E.

Director Technical Services American Concrete Pavement Association <u>eferrebee@acpa.org</u> | 847-423-8709